Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Metal‐encapsulated covalent organic frameworks (metal/COFs) represent an emerging paradigm in heterogeneous catalysis. However, the time‐intensive (usually 4 or more days) and tedious multi‐step synthesis of metal/COFs remains a significant stumbling block for their broad application. To address this challenge, we introduce a facile microwave‐assistedin situmetal encapsulation strategy to cooperatively combine COF formation andin situpalladium(II) encapsulation in one step. With this unprecedented approach, we synthesize a diverse range of palladium(II)‐encapsulated COFs (termed Mw‐Pd/COF) in the air within just an hour. Notably, this strategy is scalable for large‐scale production (~0.5 g). Leveraging the high crystallinity, porosity, and structural stability, one representative Mw‐Pd/COF exhibits remarkable activity, functional group tolerance, and recyclability for the Suzuki‐Miyaura coupling reaction at room temperature, surpassing most previously reported Pd(II)/COF catalysts with respect to catalytic performance, preparation time, and synthetic ease. This microwave‐assistedin situmetal encapsulation strategy opens a facile and rapid avenue to construct metal/COF hybrids, which hold enormous potential in a multitude of applications including heterogeneous catalysis, sensing, and energy storage.more » « lessFree, publicly-accessible full text available December 18, 2025
-
The molecular basis for the high cis -alkene selectivity over intermetallic PtSn for alkyne semi-hydrogenation is demonstrated. Unlike the universal assumption that the bimetallic surface is saturated with atomic hydrogen, molecular hydrogen has a higher barrier for dissociative adsorption on intermetallic PtSn due to the deficiency of Pt three-fold sites. The resulting molecular behavior of adsorbed hydrogen on intermetallic PtSn nanoparticles leads to pairwise-hydrogenation of three alkynes to the corresponding cis -alkenes, satisfying both high stereoselectivity and high chemoselectivity.more » « less
An official website of the United States government
